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Mobile-robot pose estimation and environment mapping using an extended Kalman filter

Gregor Klančar∗, Luka Teslić and Igor Škrjanc

Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia

(Received 4 April 2011; final version received 28 September 2012)

In this paper an extended Kalman filter (EKF) is used in the simultaneous localisation and mapping (SLAM) of a four-wheeled
mobile robot in an indoor environment. The robot’s pose and environment map are estimated from incremental encoders and
from laser-range-finder (LRF) sensor readings. The map of the environment consists of line segments, which are estimated
from the LRF’s scans. A good state convergence of the EKF is obtained using the proposed methods for the input- and
output-noise covariance matrices’ estimation. The output-noise covariance matrix, consisting of the observed-line-features’
covariances, is estimated from the LRF’s measurements using the least-squares method. The experimental results from the
localisation and SLAM experiments in the indoor environment show the applicability of the proposed approach. The main
paper contribution is the improvement of the SLAM algorithm convergence due to the noise covariance matrices’ estimation.
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1. Introduction

Simultaneous localisation and mapping (SLAM) is one of
the key problems to be solved for autonomous mobile-robot
operation in an unknown environment. A robot with no prior
environment information needs to build a consistent map
of the environment by moving through the environment and
then use this map to localise, plan and control its motion at
the same time.

1.1. The problem description

In SLAM a state vector consists of the robot’s pose and
the observed locations of the environment features. In an
extended Kalman filter (EKF) all the state variables are
correlated through the covariance matrix, which means that
the observation of each feature affects the estimate of other
features in the map. Therefore, every observation requires
that the complete state vector, as well as the covariance
matrix, is updated. As a consequence, the computational
complexity of the EKF grows quadratically with the number
of estimated states (Durrant-Whyte and Bailey 2006).

In EKF based and other SLAM approaches usually only
an ad hoc tuning of stochastic modelling parameters is made
(uncertainties defined by covariance matrices) to deal with
model approximations on the predicted pose (Borges and
Aldon 2003). However, appropriate adjustments of these
modelling parameters are required to achieve a good perfor-
mance of EKF estimators such as stability and convergence.
Also a feature matching process can be done more effi-
ciently if an appropriate weighting using these modelling

∗Corresponding author. Email: gregor.klancar@fe.uni-lj.si

parameters is used in the Mahalanobis distance. If input or
output uncertainties propagate through nonlinear relation to
the filter states or observations the appropriate covariances
can be estimated using linearisation of these nonlinearities.
Good estimation results in case of nonlinearities can also
be obtained using unscented transform (UT) (Hartikainen,
Solin, and Särkkä 2011).

In this paper, we propose a novel technique for on-
line estimation of stochastic modelling parameters which
contribute to a better performance regarding EKF conver-
gence and stability and to a more reliable feature matching
process. The input-noise covariance matrix of the EKF is
derived from the known noise variances of the angular-
velocity measurements of both robot wheels, while the
covariance matrix of the line-equation parameters (the
output-noise covariance matrix) is estimated from the laser-
range-finder’s (LRF) scan by the proposed least-squares
(LSQ) method applying the linearisation of noise prop-
agation. For the proposed method of observation uncer-
tainty estimation some directions, validation and compar-
ison to unscented transform (UT) are presented. We aim
to obtain computational efficient methods for estimation of
noise covariance matrices. The analysis of how the esti-
mated robot pose uncertainty is affected according to the
proposed line segment parameters uncertainty estimation
is also performed. The contribution of this work is also an
extension of localisation approach described in our previ-
ous work (Teslić, Škrjanc, and Klančar 2010a) to the SLAM
approach with a detailed description and experimental eval-
uation. Evaluations of the proposed algorithms are provided

C© 2013 Taylor & Francis
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by experiments on a Pioneer 3-AT mobile robot and also
by a comparison to the Monte-Carlo based SLAM software
Mapper3 from MobileRobots Inc. (MobileRobots 2009)
which has been used and verified by many researchers. The
disadvantage of our method is that it requires line features
to be estimated from the environment which can be less re-
liable in unstructured environments. The proposed SLAM
approach can be applied to other mobile systems and it can
also be upgraded with obstacle avoidance and path plan-
ning capabilities as in Pozna, Troester, Precup, Tar, and
Preitl (2009) and Dakulović and Petrović (2011) to achieve
fully autonomous SLAM mission.

1.2. Prior work

In Thrun (2002) a comprehensive survey of the SLAM
problem in mobile robotics is presented, and in litera-
ture, many approaches and algorithms involved in solving
the SLAM, localisation and mapping problem have been
proposed.

Many approaches (Bailey and Durrant-Whyte 2006)
have been developed to reduce computational complexity
and the associated computation by usually implementing
conservative and less accurate algorithms such as informa-
tion matrix for SLAM, partitioned updates of local map re-
gions, submapping methods and the like. A topological map
and a metric map are combined in Tomatis, Nourbakhsh,
and Siegwart (2003) and switched state-space models for
robot localisation were introduced in Baltzakis and Traha-
nias (2003). In Bošnak, Matko, and Blažič (2012) a lover
complexity of the Kalman filter localisation is achieved by
supposing constant covariances and time invariant process
which result in constant Kalman gains. A computational
efficient localisation using principal component analysis
on laser range data is provided in Crowley, Wallner, and
Schiele (1998), while Diosi and Kleeman (2007) suggest
a laser scan matching approach in polar coordinates. A
non-parametric representation of the environment using
maximum-likelihood subsets of the data points obtained by
LRF is suggested in Delius and Burgard (2010). A real-time
mapping obtained by LRF’s data histograms correlation is
proposed in Rofer (2002), Petri net-based localisation of a
mobile robot is developed in Lee and Chung (2006) and
visual localisation approach using features extracted from
environment is presented in Xu, Han, Tan, and Li (2009)
and Wu and Qin (2011). In the presented paper the focus
is given to the computational efficient methods for an ac-
curate estimation of covariances which contribute to the
SLAM convergence and stability.

Environment representation is often obtained by line
segments as in Veeck and Veeck (2004) and Latecki,
Sobel, and Lakaemper (2009). A fuzzy approach to line
segments extraction algorithm is introduced in Borges and
Aldon (2004) and a robust iterative regression model for
line segments extraction with outliers detection is presented

in Zhang, Rad, and Wong (2008). Borges and Aldon (2003)
propose a robust Kalman-filter-based pose estimation us-
ing weighted least-square algorithm for outliers rejection. In
Nguyen, Gächter, Martinelli, Tomatis, and Siegwart (2007)
a comparison of line-extraction algorithms using a 2D LRF
is reported. Based on this comparison a split-and-merge al-
gorithm is chosen in this paper because of its good speed
and correctness. The EKF-based localisation algorithm for
structured environments is shown in Teslić et al. (2010a).
Accurate and computationally efficient least-squares ap-
proach for line parameters and their covariances estimation
from LRF scan is used in this work.

One of the challenges is also an appropriate selection
of stochastic parameters which affect the overall SLAM
operation (Borges and Aldon 2003). For nonlinear systems
an Unscented Kalman Filter (UKF) is proposed where un-
scented transformation (UT) is used to estimate uncertain-
ties (Hartikainen et al. 2011). In Sakai and Kuroda (2010)
a learning technique to help developers to adjust the UKF
parameters (input- and measurement-noise covariance ma-
trices and unscented transformation parameters) for an ac-
curate localisation is used. In this work a statistical analysis
of a lineralisation approach and UT is made to estimate
covariances of the line segment nonlinear transformation.
It is established that UT method does not bring any no-
ticeable advantage over the proposed method using lineari-
sation which means that nonlinearity of noise propagation
function can be approximated by a less computationally
expensive linearisation approach. UT method may become
beneficial only if the noise level of the applied LRF (Sick
LMS200) would be much higher than currently estimated
in the experiments.

This paper is organised as follows. In Section 2 there
is a description of the wheeled mobile robot and the envi-
ronment represented by the extracted line features. Here,
the robot kinematics and noise models described by the co-
variance matrices of the input noise and the line parameters
are estimated. Section 3 defines the prediction and correc-
tion steps of the SLAM algorithm using the EKF approach.
In Section 4 the results of the SLAM algorithm imple-
mented on the Pioneer 3-AT robot in an indoor, structured
environment are presented. The paper is concluded in
Section 5.

2. Mobile robot and the environment

The Pioneer 3-AT four-wheel mobile robot (Figure 1) was
used in an indoor environment that can be described by
line segments. The mobile robot has no prior information
about the environment where it operates, and therefore
it has to construct the map of its environment and
simultaneously use this map for localisation. The SLAM
algorithm uses only information from incremental encoder
sensors attached to the wheels and the LRF Sick LMS200
(Figure 1).
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International Journal of Systems Science 3

Figure 1. Wheeled Pioneer 3-AT mobile robot with laser range
scanner Sick LMS200.

The robot’s kinematic model, required to predict the
robot’s pose, is given by

xp(k + 1) = f(xp(k),u(k))
xp(k + 1) =⎡
⎢⎣
xr (k) + T R

2 (ωR(k) + ωL(k)) cos(ϕr (k))

yr (k) + T R
2 (ωR(k) + ωL(k)) sin(ϕr (k))

ϕr (k) + T R
L

(ωR(k) − ωL(k))

⎤
⎥⎦ , (1)

where xp(k) = [xr (k), yr (k), ϕr (k)]T is the robot’s pose
at the time instant k, T is the sampling time, R is robot
wheel’s radius, L is the intermediate wheel distance and
u = [ωR, ωL] are incremental encoder measurements of
the right and left wheels’ rotational speed, respectively. u is
subject to an error due to the approximate odometry model
(1), the measurement noise, the sliding of the wheels (when
ωR(k) �= ωL(k)), as follows

u(k) = un(k) + v(k), (2)

where un(k) is a vector of the nominal wheel speeds and v(k)
is the measurement error. The nature of the measurement
error v(k) is modelled as the zero mean Gaussian noise with
the standard deviations being proportional to the rotational
speed (σ L = δ|ωL|, σ R = δ|ωR|). The covariance matrix of
v(k) is the input-noise covariance matrix Q(k) defined as

Q(k) =
[
δ2ω2

R(k) + α2 0
0 δ2ω2

L(k) + α2

]
, (3)

where δ and α are positive constants estimated conserva-
tively by experiments so that the estimated input uncertainty
is higher or equal to the true input uncertainty ( δ = 0.1 and

Figure 2. The line parameters (pi, αi) according to the global
coordinates, and the line parameters (ri,ψ i) according to the robot
coordinates.

α = 0.001). The constant α increases EKF stability in case
of no motion (ωR = ωL = 0).

During each time step the robot observes the environ-
ment by extracting the line parameters from the observed
LRF’s reflection points. The scanning range of the LRF
Sick LMS200 is 180◦ with a 1◦ resolution, which gives the
laser-beam angles θs = [0◦, ..., 180◦] with an associated set
of distances ds= [ds0◦ , ..., ds180◦ ] to the obstacles (e.g., a
wall). From the reflection points the line segments are iden-
tified by the edge points and the normal line parameters ψ i

and ri expressed in the local robot frame (Figure 2)

xR cosψi + yR sinψi = ri . (4)

The line parameters in each LRF scan are estimated as
follows:

• Consecutive reflection points

xscan(m) = ds(m) cos θs(m)

yscan(m) = ds(m) sin θs(m)

are calculated for all the laser beams where m =
1, . . ., 180.

• The points where the reflections occurred with
ds(m) < RLRF (RLRF is LRF’s distance range) form
an initial cluster. This cluster is then split into more
clusters if the distance between consecutive points
exceeds the expected smallest threshold distance TS

(e.g., TS = 0.15 m).
• Clusters having at least Nmin points (e.g., Nmin = 5)

are retained because they provide a reliable repre-
sentation of the environment line segments. Having
Nmin > 2 improves the line parameters’ estimation
because the LRF’s noise is averaged.

• To obtain the final consecutive clusters belonging to
the environment line segments the split-and-merge
algorithm (Nguyen et al. 2007) is applied. Clusters
of points that cannot represent a single line segment
are split. The process repeats until all the points in
each of the clusters can reliably fit the line segment
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(their distance from the line is below a predefined
threshold). The split-and-merge algorithm is, com-
pared to other line-extraction parameters such as
the Hough transform (Schiele and Crowley 1994;
Larsson, Forsberg, and Wernersson 1996; Giesler,
Graf, Dillmann, and Weiman 1998; Pfister,
Roumeliotis, and Burdick 2003), computationally
more effective, gives good results and also provides
the edge points of the line segments, which is impor-
tant information for localisation and map building.

• The least-squares method (LSQ) is used for line fit-
ting inside the identified clusters. Each cluster of
points (x, y) is then reduced to the parameters r and
ψ of the line equation in normal form according
to the robot’s coordinates. As shown in our previ-
ous work (Teslić, Škrjanc, and Klančar 2010b) the
classical LSQ can be efficiently used to estimate the
parameters of an explicit line equation

yR = kl · xR + cl.

To have a well-conditioned estimation problem the
set of points (x, y) with an estimated line slope |kl|
greater than one is first rotated by −π

2 by simply
exchanging the vector x with the vector y and the
vector y with the vector −x. The set of line-segment
points (x, y) is then reduced to the parameters r and
ψ of the line equation in normal form (4), as follows

y = [y(1), . . . , y(n)]T

U =
[

x(1) · · · x(n)
1 · · · 1

]T
θ̂ = [k̂l , ĉl]

T = (UTU)−1UT y, (5)

r(k̂l , ĉl) = ĉl√
k̂2
l + 1

sign (ĉl),

ψ(k̂l) = arctan 2

⎛
⎝ sign (ĉl)√

k̂2
l + 1

,
−k̂l√
k̂2
l + 1

sign (ĉl)

⎞
⎠ ,(6)

where n denotes the number of points that correspond
to the line segment and the function arctan 2 is a
four-quadrant arctan function.

To perform the correction step of the EKF, the covari-
ance matrix Ri of the estimated line parameters vector of
the ith line segment [ri,ψ i] also needs to be estimated.
Firstly, the covariance matrix of the line parameters [k̂l , ĉl]
is estimated from Equation (5)

Z =
[

var(k̂l) cov(k̂l , ĉl)
cov(ĉl , k̂l) var(ĉl)

]
= var(y(j ))(UTU)−1 , (7)

where

var(y(j )) =
∑n

j=1(y(j ) − ŷ(j ))2

n− 1
, ŷ(j ) = k̂l · x(j ) + ĉl

and var(y(j )) is the vertical-error variance of the line-
segment points (x(j ), y(j )) (j = 1, . . ., n) according to
the estimated line with the parameters k̂l and ĉl (7). Con-
sidering the relation between the explicit (7) and the normal
line parameters (8) the covariance matrix Ri is given by

Ri =
[

var (ri) cov (ri, ψi)
cov (ψi, ri) var (ψi)

]
, (8)

where

var (ψ) = K2
ψk var (k̂l)

var (r) = K2
rk var (k̂l) +K2

rc var (ĉl)

+2KrkKrc · cov (k̂l , ĉl)

cov (r, ψ) = KrkKψk var (k̂l) +KrcKψk · cov (k̂l , ĉl)

cov (ψ, r) = cov (r, ψ) (9)

and

Krk = −ĉl k̂l√
k̂2
l + 1(k̂2

l + 1)
sign (ĉl),

Krc = sign (ĉl)√
k̂2
l + 1

, Kψk = sign (ĉl)

k̂2
l + 1

, (10)

where gains in Equation (10) are obtained using the lin-
earisation of Equation (6) around the current values of ex-
plicit line parameters. A detailed analysis of observation
covariance estimation Ri and its comparisons to alternative
approaches are given in Subsection 3.3.

3. SLAM using extended Kalman filter

The EKF approach, which consists of a prediction and a
correction step, is adopted here for the purpose of SLAM.

3.1. Prediction step

Let x̂(k|k) = [x̂p(k|k)T , x̂m(k|k)T ]T denote a state esti-
mate (at time k) consisting of the estimated robot pose
x̂p(k|k) and the estimated line-feature parameters in a global
map x̂m(k|k) = [l̂1, . . . , l̂n]T , where l̂i = [pi , αi]T , i = 1,
. . ., n are already mapped line-feature parameters expressed
in a global (map) coordinate frame (Figure 2) as follows:

xG cosαi + yG sinαi = pi.
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The covariance matrix of the state-estimation error at time
k is denoted as P(k|k). In the prediction step the state es-
timate x̂(k|k − 1) and the state-estimation covariance ma-
trix P(k|k − 1) are predicted based on previous estimates
x̂(k − 1|k − 1), P(k − 1|k − 1) and the odometry model
(1). The covariance matrix P(k|k − 1) is structured of the
blocks belonging to the robot pose Ppp, the blocks belong-
ing to the map features Pmm and the blocks due to correla-
tions between the robot pose and the map features Ppm.

P(k|k − 1) =
[

P(k|k − 1)pp P(k|k − 1)pm
P(k|k − 1)Tpm P(k|k − 1)mm

]
.

The prediction step of the EKF is then defined as
follows:

x̂p(k|k − 1) = f(x̂p(k − 1|k − 1),u(k))

x̂m(k|k − 1) = x̂m(k − 1|k − 1)

P(k|k − 1)pp = FxP(k − 1|k − 1)ppFx
T + FuQ(k)Fu

T

P(k|k − 1)pm = FxP(k − 1|k − 1)pm
P(k|k − 1)mm = P(k − 1|k − 1)mm, (11)

where Fx = ∂f
∂xp

|(x̂p(k−1|k−1),u(k)) is the jacobian of Equation

(1) with respect to xp , Fu = ∂f
∂u |(x̂p(k−1|k−1),u(k)) is the ja-

cobian of Equation (1) with respect to noise in the input
u and Q(k) is defined in Equation (3).

3.2. Correction step

The correction step of the EKF is performed when new
observations of the line parameters (see Equation (4)) z(k)
are available.

3.2.1. Line association problem

For each observation [rj,ψ j]T in z(k) a possible feature pair
in a state vector x̂m(k|k − 1) (global map) with index i = 1,
. . ., n must be found. The matching strategy for determining
whether the observed feature is already present in the global
map (state vector x̂m(k|k − 1)) is adopted from Garulli,
Giannitrapani, Rossi, and Vicino (2005). Some other
matching approaches can also be found in Pfister et al.
(2003) and Anousaki and Kyriakopoulos (2007).

The observation is transformed to global coordinates
(see Equation (13)) as follows:

Di = rj − x̂r (k|k − 1) sin(ψj + ϕ̂r (k|k − 1))
+ŷr (k|k − 1) cos(ψj + ϕ̂r (k|k − 1))[

p̂j
α̂j

]
= g(x̂p

(
k|k − 1), rj , ψj

)
=
[ |Di|
ψj + (ϕ̂r (k|k) − π

2 ) − (−0.5 × sign(Di) + 0.5)π

]
.

A covariance matrix for the observed line parameters
[p̂j , α̂j ]T is determined as follows:

S = GxP(k|k − 1)Gx
T + GzRjGz

T ,

where

Gx = ∂g

∂ x̂p

∣∣∣∣
(x̂p(k|k−1),rj ,ψj )

=
⎡
⎣−di sin(ψj + ϕ̂r (k|k − 1)) 0
di cos(ψj + ϕ̂r (k|k − 1)) 0

oi 1

⎤
⎦
T

Gz = ∂g

∂[rj , ψj ]T

∣∣∣∣
(x̂p(k|k−1),rj ,ψj )

=
[
di oi
0 1

]
,

where di = sign(Di), oi = −di x̂r (k|k − 1) cos(ψj +
ϕ̂r (k|k − 1)) − di ŷr (k|k − 1)sin(ψj + ϕ̂r (k|k − 1)) and
Rj is the observation covariance matrix defined in Equation
(10). The observed line segment [p̂j , α̂j ]T is compared to
all line segments [pi ,αi]T, i = 1, . . ., n whose end points
are in the neighbouring region defined by the current pose
estimate and LRF range RLRF. A possible pair minimises
the weighted distance

dm =
([

pi
αi

]
−
[
p̂j
α̂j

])T
S−1

([
pi
αi

]
−
[
p̂j
α̂j

])
(12)

and fulfils the condition dm < Tm, where Tm is the threshold
value (e.g., Tm = 0.5). To find a valid line-feature pair the
edge points of the observed line segment and the mapped
feature are also compared to check whether the observed
line segment lies on the mapped line segment. The edge
points of the mapped features are not included in the state
vector. They are only used for the matching process and
are updated with the correction step of the EKF. The ob-
servations with no pair are considered as newly observed
features.

The observation of line parameters is denoted as
z(k) = [zM (k)T , zN (k)T ]T , where zM (k) = [r1, ψ1, . . . ,

rM,ψM ]T are features of already observed line seg-
ments that are present in the global map and zN (k) =
[rM+1, ψM+1, . . . , rM+N,ψM+N ]T are newly observed
features that are not present in the global map. The
observed line features zM (k) are used to update the state
estimate x̂(k|k), while the newly observed features zN (k)
are appended to x̂(k|k).

For each observation in zM (k) with index j = 1, . . .,
M a match exists in the global map x̂m(k|k − 1) with the
index i ∈ 1, . . ., n, where M is the number of observations
in zM (k) and n is the number of all the mapped features
in x̂m(k|k − 1). The parameters pi and αi of the matching
line segment from the global map (according to the global
coordinates) are transformed into the parameters r̂j and ψ̂j
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6 G. Klančar et al.

(according to the coordinates of the robot) by

Ci = pi − x̂r (k|k − 1) cos (αi) − ŷr (k|k − 1) sin (αi),[
r̂j

ψ̂j

]
= hj (x̂p(k|k − 1), pi, αi) =

[ |Ci|
αi −

(
ϕ̂r (k|k − 1) − π

2

)+ 1
2 (−sign (Ci) + 1)π

]
, (13)

where hj (·) is the observation model and x̂p(k|k − 1) (11)
is the prediction of the robot’s pose.

3.2.2. Correction step for already observed features

The predicted observations ẑM (k|k − 1) for the already
observed features zM (k) are, according to Equation (13),
given by

ẑM (k|k − 1) =⎡
⎢⎣

h1(x̂p(k|k − 1), p1, α1)
...

hM (x̂p(k|k − 1), pM, αM )

⎤
⎥⎦ . (14)

The observation jacobian of Equation (13) for the jth

observation is Hxj =
[
Hpj , Hmj

]
where

Hpj = ∂hj
∂ x̂p

∣∣∣∣
(x̂p(k|k−1),pi ,αi )

=
[−ci cos(αi) −ci sin(αi) 0

0 0 −1

]

and

Hmj = ∂hj
∂ x̂m

∣∣∣∣
(x̂p(k|k−1),pi ,αi )

=
[

0 0 · · · ci gi · · · 0 0
0 0 · · · 0 1 · · · 0 0

]
,

where ci = sign (Ci) and gi = ci x̂r (k|k − 1) sin (αi) −
ci ŷr (k|k − 1) cos(αi). When observing the ith feature (a
pair to the jth observation), the observation jacobian Hmj

is of dimension 2 × 2n and is non-zero only at the location
of the ith feature in the state vector x̂m(k|k − 1). The obser-
vation jacobian for all the observations in zM (k) is given by

Hx = [
Hx

T
1 , . . . ,Hx

T
M

]T
.

The correction step is then defined as follows:

x̂(k|k) = x̂(k|k − 1) + K (zM (k) − ẑM (k|k − 1))

P(k|k) = P(k|k − 1) − KHxP(k|k − 1)

K = P(k|k − 1)Hx
T
(
HxP(k|k − 1)Hx

T + R
)−1

, (15)

where R is the observation covariance matrix

R =

⎡
⎢⎢⎢⎢⎣

R1 0 · · · 0

0 R2 · · · ...
...

...
. . .

...
0 0 · · · RM

⎤
⎥⎥⎥⎥⎦

composed of the covariance matrices Rj for each
observation, which are estimated in Equation (8).

3.2.3. Correction step for new features

The observed line-feature parameters zN (k) = [rM+1,

ψM+1, . . . , rM+N,ψM+N ] not mapped yet are appended
to the map x̂m(k|k − 1). The observed line features zN (k)
with parameters rf and ψ f, f = M + 1, . . ., M + N are
transformed into the parameters p̂f and α̂f expressed in
the global coordinates (see Equation (13)) as follows:

Di = rf − x̂r (k|k) sin (ψf + ϕ̂r (k|k))
+ŷr (k|k) cos (ψf + ϕ̂r (k|k))[

p̂f
α̂f

]
= g(x̂p

(
k|k), rf , ψf

)

=
[ |Di|
ψf + (ϕ̂r (k|k) − π

2 ) − (−0.5 × sign (Di) + 0.5)π

]
.

The state vector x̂(k|k) and the covariance matrix P(k|k)
after adding new features become

x̂(k|k)∗ = [
x̂(k|k)T , gTM+1 , . . . , gTM+N

]T
P∗(k|k) =[

P(k|k) P(k|k)Gx
T

GxP(k|k) GxP(k|k)Gx
T + GzRGz

T

] , (16)

where Gx and Gz are jacobian matrices, defined as follows:

Gx = [
Gx

T
M+1, · · · ,Gx

T
M+N

]T

Gz =

⎡
⎢⎢⎢⎢⎣

GzM+1 0 . . . 0

0 GzM+2 . . .
...

...
...

. . .
...

0 0 · · · GzM+N

⎤
⎥⎥⎥⎥⎦

with

Gxf = ∂g

∂ x̂p
|(x̂p(k|k),rf ,ψf )

=
[−di sin(ψf + ϕ̂r (k|k)) di cos(ψf + ϕ̂r (k|k)) oi

0 0 1

]

Gzf = ∂g

∂[rf , ψf ]T

∣∣∣∣
(x̂p(k|k),rf ,ψf )

=
[
di oi
0 1

]
,
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International Journal of Systems Science 7

Figure 3. EKF-based SLAM for wheeled mobile robot.

where di = sign (Di), oi = −di x̂r (k|k) cos (ψf +
ϕ̂r (k|k)) − di ŷr (k|k) sin (ψf + ϕ̂r (k|k)) and R is the
observation covariance matrix

R =

⎡
⎢⎢⎢⎢⎣

RM+1 0 · · · 0

0 RM+2 · · · ...
...

...
. . .

...
0 0 · · · RM+N

⎤
⎥⎥⎥⎥⎦

composed of the covariance matrices Rj for each
observation, which are estimated in Equation (8).

To avoid unreliable features appearing in the state vec-
tor, new features are first put in a trial list and added to the
state vector after they have been seen a predefined number
of times in some time period (Dissanayake, Newman, Clark,
Durrant-Whyte, and Csorba 2001). The possible occurrence
of multiple features in the state vector, which represent the
same line in the environment, can be fused together by
periodically validating the state vector (Garulli et al. 2005).

A flow chart of the presented SLAM algorithm is shown
in Figure 3.

In the proposed SLAM the accuracy of localisation and
mapping depends on the accuracy of the line-feature param-
eters estimation from the measured LRF’s reflection points.
An important issue in the line segment landmarks is that
error in perpendicular distance var(r) varies significantly in
case of small changes in the line slope if the robot is far
away from the line. In a situation when the observed objects
are far and their line segments are estimated from a smaller
number of LRF’s points the estimated line parameters have
higher variances which consequentially lowers the local-
isation accuracy. According to Equation (9) the variance
var(r) of the parameter r mainly depends on the variance
var(kl) and on Krk (10) which defines the sensitivity of the
line parameter r according to the slope of the line kl.

var(kl) in Equation (7) depends on vertical-error
var(y(j)) which is influenced by LRF’s angular and distance
measurement noise. The shape of function Krk with respect
to the parameters of the line segment is given in Figure 4.
According to Equation (10) Krk is larger if cl is large (i.e.,

Figure 4. Uncertainty propagation function Krk with respect to kl and cl.
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8 G. Klančar et al.

robot is far from the environment line) and gets maximum
at (see Equation (10))

∂Krk

∂kl

∣∣∣∣
cl=const

= 0 =⇒ (kl
2 + 1)−

3
2 − 3kl

2(kl
2 + 1)−

5
2 = 0

=⇒ |kl| =
√

2

2
. (17)

This means that when observing the far-away line with the

slope |kl| =
√

2
2 the small variations of kl are magnified by a

factor |Krk| = 0.385|cl| to deviations of r. In this special case
a larger variance of parameter r lowers the correction gain
in EKF (K in Equation (15)) and increases variances of the
estimated robot pose. Because the line parameter r depends
on the robot pose in the environment also the variance
var(r) depends on the robot pose. As already mentioned this
worst case scenario could happen when the line is estimated
from a smaller number of points. However, the estimated
uncertainties are still in tolerance band which enables a
good localisation of the robot.

To support the above statements the effect of the pro-
posed line segment uncertainties to the uncertainties of the
estimated robot pose using EKF is analysed. As seen from
Equation (7) covariance matrix of estimated line parameters
kl, cl are dependant on a set of points for line parameters
estimation this is on their location according to robot co-
ordinate frame. To simplify this analysis let us suppose
that the estimated line parameters covariance matrix Z in
Equation (7) are constant for the arbitrary observed line in
the environment with the variances set as follows var(kl) =
2.5 × 10−3, var(cl) = 0.1 × 10−3 m2 and cov(cl, kl) = 0 m,
respectively. In the analysis the robot is located at xr = 0 m,
yr = 0 m and ϕr = 0 ◦ and is not moving. It observes one line
segment with parameters kl and cl. Initial state-estimation
error uncertainty is set to var(xr) = 0.1 m2, var(yr) = 0.1 m2

and var(ϕr) = 0.1 rad2 while the line parameters in global
map (state vector x̂m(k|k − 1)) have zero uncertainty. In
the analysis the variance of the normal line parameters is
calculated using Equation (9) and their dependence to the
parameters kl and cl is given in Figure 5.

Where it can be seen that maximum uncertainty of var(r)

is located at kl = ±
√

2
2 as already calculated in Equation

(17). Then by considering correction step (Equations (13)–
(15)) the new robot pose uncertainty dependent on the line
parameters kl and cl is calculated as shown in Figure 6.

Variances var(xr) and var(yr) in Figure 6 increase with
cl. At kl = 0 the variance var(xr) is the highest because robot
orientation (ϕr = 0) and the observed line are aligned with
the x axis while on the contrary the variance var(yr) is the
lowest.

In Figure 7 the distance uncertainty var(dist) = var(xr)
+ var(yr) from the true robot position (xr = 0 m, yr = 0 m)
is shown where again the maximum uncertainty is located

at kl = ±
√

2
2 and increases with higher values of cl.

Figure 5. Uncertainty var (ψ), var(r) and var (r, ψ) with respect
to kl and cl.

At low values of cl (line is close to the robot) distance
uncertainty becomes low according to Equation (11) and
assumption that var(kl) and var(cl) are constant irrespective
of where the line is according to the robot. It should be noted
that in practice (see Equation (7)) the estimated uncertainty
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Figure 6. Uncertainty var(xr), var(yr) and var(ϕr) with respect
to kl and cl.

of line parameters kl and cl is a bit higher if the line is
close to the robot. This happens because LRF has quite
constant noise when measuring distance to either closer of
farther reflection points. If the line segment is closer to
the robot and estimated from the same number of the line
segment points then it is shorter. The measured reflection

points are due to the shorter line segment relatively more
scattered around the true line and the estimated covariances
by Equation (7) become higher.

3.3. Validation of estimated observation
uncertainty

The appropriate operation of EKF depends on the correct
assumption of uncertainties that influence state estimation
process (Borges and Aldon 2003; Sakai and Kuroda 2010).
In the following some directions and the validation of the
proposed method for the estimation of observation uncer-
tainty are given.

3.3.1. Note on stability and convergence of EKF

According to Julier (1997) a consistent estimate of covari-
ance matrix P(k|k) in correction step is required to achieve
stable operation of EKF. The condition to obtain conserva-
tive estimate P(k|k) is P(k|k) − P(k|k) ≥ 0, where P(k|k)
is true covariance matrix in the correction step. A sufficient
condition to ensure positive definiteness of the difference
P(k|k) − P(k|k) is consistence of the prediction covariance
P(k|k − 1) and the observation covariance R(k)

P(k|k − 1) − P(k|k − 1) ≥ 0
R(k) − R(k) ≥ 0,

where P(k|k − 1) is true prediction covariance and R is true
observation covariance. The first condition requires consis-
tent prediction P(k|k − 1) which is achieved by setting the
input covariance matrix (3). The second condition requires
that the estimated observation noise exceeds that of the true
system.

The convergence of EKF explains how fast the
estimated states approach to the true states. In stable EKF
operation the convergence is faster if the estimated noise
covariances are closer to the true ones. Small estimated
observation-noise covariance causes high gain matrix (15)
in the correction step of EKF. However, the estimated
noise (input and observation) must not be lower than
the true noise to obtain stable EKF operation. Addition-
ally, the input Q(k) and observation R(k) matrices must
be properly balanced. If not balanced correctly, then the ob-
servation errors may incorrectly influence the state estima-
tion (Q(k) − Q̄(k) 
 0, R(k) − R̄(k) ≥ 0) or the state esti-
mation may become insensitive to the observation residuals
(Q(k) − Q̄(k) ≥ 0, R(k) − R̄(k) 
 0).

3.3.2. Statistical comparison

The appropriate observation covariance R(k) needs to be
estimated to achieve good performance regarding stabil-
ity and convergence as stated above. Additionally, accurate
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10 G. Klančar et al.

Figure 7. Distance uncertainty var(dist) with respect to kl and cl.

estimation of observation covariance also enables better
matching results between the observed features and the
features in global map which is done using Mahalanobis
distance (12). Therefore, an appropriate estimation method
is required.

In Section 2 the method for estimating the observation
covariance is given (Equations (5)–(10)) using LSQ and lin-
earisation of the nonlinear dependency between parameters
of explicit and normal line Equation (6).

Here the comparison of the proposed method using lin-
earisation (LIN) is made to the method using unscented
transform (UT) which is known to give good estimation re-
sults in case of nonlinearities (Hartikainen et al. 2011). UT
is used to approximate the observation covariance where
the explicit line parameters uncertainty propagates through
nonlinear relation (6) to the uncertainty of line parameters in
normal form. This could give a more accurate estimate than
the error propagation via first-order Taylor series expansion.

Input information to the UT method is a current esti-
mate of explicit line parameters θ̂ = [k̂l , ĉl]T (see Equation
(5)) and its covariance matrix Z (see Equation (7)). The ob-
servation covariance can be calculated using UT, as shown
in Hartikainen et al. (2011), as follows:

• Five (2n + 1, n is the dimension of θ̂) sigma points
X are calculated, one is the current estimate θ̂ and the
other four are obtained by perturbation of the first in
the direction of the principal component axes of Z

X = [
θ̂ θ̂ θ̂ θ̂ θ̂

]+ √
c
[
0

√
Z −

√
Z
]
,

where
√

Z is obtained using Cholesky factorisation
and c = α2(n + κ) is scaling parameter. The positive
constants α, β and κ in the comparison are α = 0.01,
β = 2 and κ = 1 (for more details see Sakai and
Kuroda 2010; Hartikainen et al. 2011).

• Sigma points X are propagated through nonlinearity
g defined in Equation (6)

Y = g(X),

where function g(·) is applied to each column of X
separately.

• Estimate of observation covariance matrix is then
defined as

RUT = YWYT , (18)

where W is weight matrix, defines as

W = (I − [wm · · · wm]) diag
(
W (0)
c · · ·W (2n)

c

)
(I − [wm · · · wm])T

wm = [
W (0)
m · · ·W (2n)

m

]
W (0)
m = λ/(n+ λ)

W (0)
c = λ/(n+ λ) + (1 − α2 + β)

W (i)
m = W (i)

c = 1/ (2(n+ λ)) , i = 1, . . . , 2n

where λ = α2(n + κ) − n.
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Table 1 Three environment line segments, which correspond to
n = 36 LRF’s points.

re1 = 2m, ψ e1 = 90◦, θ s(j): 60◦, 61◦, . . ., 95◦

re2 = 50m, ψ e2 = 130◦, θ s(j): 80◦, 81◦, . . ., 115◦

re3 = 10m, ψ e3 = 170◦, θ s(j): 97◦, 98◦, . . ., 132◦

The comparison of both methods (LIN and UT) for esti-
mating the covariance matrix is done using statistical anal-
ysis. Three different environment line segments are simu-
lated. They are defined by normal line parameters (rei, ψei;
i = 1, 2, 3) (Tables 1 and 2) and laser-beam angels θ s(j), at
1◦ resolution or n = 36 points for each line segment.

The LRF’s noise is approximated using normal distri-
bution with zero mean and standard deviations for distance
measurement error σ d = 30 mm and for laser-beam error
σ θ = 0.017rad.

Each line experiment is repeated many times (e.g.,
Ntr = 10, 000). The line parameters ru and ψu (u = 1,
..., Ntr) calculated by LSQ (5) and (6) slightly differ in each
experiment due to the LRF’s noise. The reference standard
deviation of both line parameters and the covariance be-
tween them are calculated for both methods by

σru =
√√√√ 1

Ntr

Ntr∑
u=1

(ru − rei)2,

σψu =
√√√√ 1

Ntr

Ntr∑
u=1

(ψu − ψei)2,

cov (ru, ψu) = 1

Ntr

Ntr∑
u=1

(ru − rei) ∗ (ψu − ψei);

i = 1, 2, 3, (19)

and are shown in Table 2. They are used for comparison of
already described methods for estimation of the variances
and covariance.

Firstly, the standard deviations σr = √
var(r), σψ =√

var(ψ) and the covariance covar(r,ψ) are calculated with
the method resulting from LSQ and linearisation (9). Here,
the vertical-error variance var(y(j )) (7) is calculated from
the LRF’s points, as shown in Equation (7). If this vari-
ance is estimated from a very small (e.g., 5) number of
line-segment points, the estimation is not very accurate. If
an accurate variance of the LRF’s distance-measurement
error σ 2

dj
and variance of the laser-beam angle error σ 2

θj

are given from a LRF’s noise model, a better estimation of
the vertical-error variance var(y(j )) can be calculated (in
Table 2 this is marked with a priori prefix).

In Table 2 the results of the experiments are shown
where the standard deviations and the covariance of the line
parameters r and ψ were calculated with the method re-
sulting from linearisation as σr = √

var(r), σψ = √
var(ψ)

and cov (r,ψ) (9) and with the method resulting from
the UT (18) as σr = √

R∗
UT (1, 1), σψ = √

R∗
UT (2, 2) and

cov(r, ψ) = R∗
UT (2, 1). All three environment line seg-

ments in Table 1 are considered. Due to LRF’s noise (σ 2
dj

and

σ 2
θj

) these two variances and the covariance as well as the
reference variances σ r and σψ and the covariance cov(r,ψ)
are different in each experiment. Therefore, the mean and
standard deviation of all (Ntr = 10, 000) calculated stan-
dard deviations are shown in Table 2. Standard deviations
std(σ r), std(σψ ) and std(cov(r,ψ)) are calculated accord-
ing to means mean(σ r), mean(σψ ) and mean(cov(r,ψ)),
respectively. mean(·) and std(·) of the variances σ r and
σψ and covariances cov(r,ψ) in Table 2 refer to the case
where var(y(j )) is estimated from the LRF points during

Table 2 Comparison of the accuracy of the covariance estimation method using linearisation (LIN) and unscented transform (UT), where
three different environment line segments (rei, ψ ei; i = 1, 2, 3) are simulated.

re1, ψ e1 re2, ψ e2 re3, ψ e3

LIN UT LIN UT LIN UT

σru 7.74 7.74 26.98 26.98 15.28 15.28
mean(σ r) 7.30 7.30 28.70 29.11 14.48 14.58
std(σr ) 0.92 0.92 4.07 4.01 1.99 1.97
a priori:mean(σr ) 7.45 7.46 29.52 26.91 14.83 14.93
a priori:std(σr ) 0.20 0.20 0.053 0.052 0.014 0.014
σψu 0.0122 0.0122 9.2 × 10−4 9.2 × 10−4 0.001 0.001
mean(σψ ) 0.0121 0.0121 8.0 × 10−4 8.3 × 10−4 8.1 × 10−4 8.4 × 10−4

std(σψ ) 0.0015 0.0015 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

a priori:mean(σψ ) 0.0123 0.0123 8.2 × 10−4 8.5 × 10−4 8.3 × 10−4 8.7 × 10−4

a priori:std(σψ ) 8 × 10−5 8 × 10−5 3 × 10−7 3 × 10−7 1.7 × 10−6 1.6 × 10−6

cov(ru,ψu) −0.074 −0.074 −0.023 −0.023 −0.014 −0.014
mean(cov(r,ψ)) −0.068 −0.068 −0.022 −0.021 −0.011 −0.011
std(cov(r, ψ)) 0.017 0.017 0.006 0.006 0.003 0.003
a priori:mean(cov(r, ψ)) −0.070 −0.070 −0.022 −0.021 −0.011 −0.011
a priori:std(cov(r, ψ)) 0.003 0.003 5 × 10−5 5 × 10−5 4 × 10−5 4 × 10−5
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12 G. Klančar et al.

each experiment. a priori:mean(·) and a priori:std(·) of the
variances σ r and σψ and covariances cov(r,ψ) in Table 2
refer to the case where var(y(j )) is estimated from the a
priori known variances of the LRF’s noise model σ 2

dj
and

σ 2
θj

. Accuracy of the estimated standard deviations and the
covariance (when var(y(j )) is estimated from points) is de-
pended on the number of line-segment points (less accurate
at lower number of points), therefore, a more accurate esti-
mates are obtained if LRF’s noise model is a priori given.
In the experiments a priori known variances σ 2

dj
and σ 2

θj

were set to the true variances (30 mm)2 and (0.0017 rad)2,
respectively.

As seen from Table 2 both methods are close to the
reference standard deviation and covariance. UT method
does not bring any noticeable advantage over the proposed
method using linearisation (LIN) which means that uncer-
tainty propagation through nonlinear relation (6) does not
play an important role here and can be approximated by less
computational expensive linearisation (8). The calculation
of Cholesky factorisation to obtain square root of the covari-
ance matrix Z is an iterative process and requires a much
higher computational burden than linearisation (Sakai and
Kuroda 2010). By measuring the elapsed time for line ex-
periment a rough estimate of computational complexity
of the proposed LIN method regarding the UT method is
estimated. For Ntr = 10, 000 times repeated line experi-
ment LIN method takes 1.7s on a personal computer (2
Quad CPU, 2.66 GHz, implementation in Matlab) while
UT method takes 3.3s which is 94% more. UT method may
become beneficial only if the noise level of the applied
LRF SickLMS200 would be much higher than currently
estimated in the experiments.

4. Experimental results

The proposed SLAM algorithm was experimentally vali-
dated on the mobile robot Pioneer 3-AT. In the experiment
the mobile robot was driven by setting constant angular
velocities to its wheels ωR(k) = 2.7 rad/s and ωL(k) =
1.9 rad/s, k = 1, . . ., 500 causing the robot to circle in
the environment with a translational speed of 0.37 m/s.
The robot scans the environment and makes map updates
at a frequency of 10 Hz. The robot’s initial pose was
set to x̂p(1|1) = [0, −1, 0]T with an initial uncertainty
std(x̂r (1|1)) = std(ŷr (1|1)) = 1 cm and std(ϕ̂r (1|1)) =
0.01 rad.

Due to disturbances such as, the input noise, the slipping
of the wheels and similar the robot’s path is not a perfect
circle, as seen in Figure 11. The input-noise covariance
Q(k) is estimated as proposed in Equation (3), where δ
= 0.1. The observation covariance matrix R is estimated
for each identified line feature in the LRF’s scan using the
least-squares method, as described in Equations (7)–(10).

Figure 8. Robot pose and mapped line features of the environ-
ment at time k = 2.

The consecutive maps of the environment and the robot
path at time instants k = 2, 50, 300, 500 are shown in
Figures 8–11.

The map of the identified line features evolves over
time. During the first observation, the features have a high
uncertainty, which is then reduced with new observations.

Figures 12–14 show the estimated line parameters
and their uncertainty area for three different line features
marked in Figures 8–11 as A, B and C, respectively. The
feature A in Figure 12 has α

.= −π /2 , the feature B in Figure
13 has α

.=0 and the feature C in Figure 14 has α
.=π /3. The

uncertainty is defined by three standard deviations (95%
probability) and shown for the time course k. It can be seen
that the features’ uncertainty decreases and is at the best
bounded with the initial uncertainty of the robot pose. The
uncertainty of the feature B in Figure 13 is high, according

Figure 9. Robot pose and mapped line features of the environ-
ment at time k = 50.
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International Journal of Systems Science 13

Figure 10. Robot pose and mapped line features of the environ-
ment at time k = 300.

Figure 11. Robot pose and mapped line features of the environ-
ment at time k = 500.

Figure 12. Estimated line parameters of feature A and the 95%
probability area of the estimate for the time course.

Figure 13. Estimated line parameters of feature B and the 95%
probability area of the estimate for the time course.

Figure 14. Estimated line parameters of feature C and the 95%
probability area of the estimate for the time course.

to the uncertainty of the feature A in Figure 12, because the
line is estimated from a smaller number of LRF’s reflection
points.

According to Section 3.3, the proposed SLAM approach
is stable if estimated covariances P(k|k) in the correction
step are higher or at least equal to the true one. To obtain
a faster convergence of the estimated parameters the co-
variances should be close to the true values and must not
be smaller than the true covariances to have stable EKF
estimation. In Table 2 the statistical analysis of the pro-
posed covariance estimation method accuracy is made. This
analysis shows that estimated covariances are close to the
true covariances. However, to assure stability of EKF the
estimated covariances need to be also consistent. Accord-
ing to performed analysis stable operation is guaranteed if,
for example, the obtained estimated covariances are in-
creased for approximately 10% which assures that esti-
mated covariances are still close and higher than the true
covariances.

The experimental analysis of the SLAM algorithm
operation is shown in Figure 15. The estimated robot
pose variances are shown for the proposed output-noise
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14 G. Klančar et al.

Figure 15. Estimated variances of robot position and orientation.
Comparison for the proposed estimated output-noise covariances
(solid line) and for constant conservatively set output-noise co-
variances (dashed line).

covariance matrix estimation and for the constant conser-
vatively set output-noise covariance matrix. The constant
conservative output covariance matrix is selected by exper-
iments so that a stable SLAM operation is achieved. As
stated in Subsection 3.3, the consistent estimate of input
and observation covariance must not be optimistic, there-
fore, the worst case scenario with the highest estimated un-
certainties is selected to tune the constant output covariance
matrix. It is obvious that the proposed output-covariances
estimation scheme results in smaller pose covariances. In
average up to 20% lower pose covariances are achieved,
which results in faster convergence of the SLAM algorithm.

Figure 16. Estimated robot trajectory (–) and environment map
by the proposed SLAM. Comparison to the estimated trajectory
by the SLAM implemented in the original Pioneer 3-AT software
(- -).

Figure 17. Estimated robot trajectory and environment map by
the SLAM implemented in the original Pioneer 3-AT software.

In the following a comparison of the proposed SLAM
algorithm and SLAM algorithm implemented in the origi-
nal Pioneer 3-AT software Mapper3 from MobileRobots
Inc. (see MobileRobots 2009) is given in Figures 16
and 17. The Pioneer 3-AT SLAM software uses Monte-
Carlo based approach. The software is reliable and very
often used and has been verified by many researchers; there-
fore, the comparison makes sense.

Both SLAM algorithms were performed in the same
experiment and initialised with the same initial pose esti-
mate. The proposed SLAM is running in real time while the
SLAM implemented in Mapper3 programme only collects

Figure 18. Difference between the pose estimates from the pro-
posed SLAM and the SLAM implemented in the original Pioneer
3-AT software.
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data in real time and then implements SLAM algorithm
offline.

Note that the pose obtained by the Pioneer 3-AT local-
isation software is approximate and can even be less accu-
rate than the pose of the proposed SLAM. As seen from
Figures 16 and 17 the results (estimated trajectory and ob-
tained map) are very similar. The closer difference between
the pose estimates of both SLAM approaches is given in
Figure 18. The difference between them is small (10 cm in
position and 1◦ in orientation) therefore both SLAM are
accurate.

The absolute accuracy of the estimated robot pose is
tested for the final pose only, i.e. where the robot stops.
The robot’s position and orientation error in the final pose,
estimated from more experiments, is evaluated as being
approximately 4 cm and 0.7◦ for the proposed SLAM and
6 cm and 0.8◦ for the SLAM implemented in Pioneer 3-AT
software, respectively.

5. Conclusion

In this paper a SLAM based on the EKF for a mobile robot
navigating in indoor environment is presented. The robot
is equipped with incremental encoders and LRF sensors,
used to estimate its pose and to map the environment with
a line-based representation. To achieve good convergence
of the pose and environment map estimates (given in the
system states of the EKF) methods for estimating the input
and output covariance matrices are presented. Their real-
istic approximation contributes to the lower uncertainties
of the estimated system states compared to the usual case
where the covariances need to be set conservatively with
higher values. The proposed observation covariance matrix
estimation method which uses linearisation of nonlinear
noise propagation function is statistically compared to the
unscented transform which is known to give good estima-
tion results in case of nonlinearities. It is established that
unscented transform (UT) method does not bring any no-
ticeable advantage over the proposed method using lineari-
sation which means that nonlinearity of noise propagation
function can be approximated by a less computationally
expensive linearisation. UT method may become benefi-
cial only if the applied LRF’s noise level would be much
higher. The limitation of the proposed SLAM approach
is the use of line-based features only, which could make
the operation in unstructured outdoor environments less
reliable. The further developments would therefore focus
on a system upgrade with a vision sensor. The proposed
SLAM could also be upgraded with obstacle avoidance
and path planning capabilities to achieve fully autonomous
SLAM mission. Due to good convergence properties
obtained by the simultaneous estimates of uncertainties
the proposed methods will also be applied to other mobile
systems.
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